Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

نویسندگان

  • Moisés Martínez-Castillo
  • Gerardo Ramírez-Rico
  • Jesús Serrano-Luna
  • Mineko Shibayama
چکیده

Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lys...

متن کامل

Inhibition of Naegleria fowleri by microbial iron-chelating agents: ecological implications.

Deferrioxamine B and rhodotorulic acid, iron-chelating agents of microbial origin, exerted a pronounced inhibitory effect on pathogenic Naegleria fowleri at microgram levels. This inhibition was diminished by adding iron to the chelators before incubation with Naegleria isolates. These and related microbial iron chelators occur naturally in the environment. This could be of considerable ecologi...

متن کامل

Proteinases in Naegleria Fowleri (strain NF3), a pathogenic amoeba: a preliminary study.

Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomye...

متن کامل

Anti-amebic Activity of Diosgenin on Naegleria Fowleri Trophozoites.

The aim of this study was to investigate the activity of diosgenin against Naegleria fowleri trophozoites at the cellular and molecular levels. Diosgenin (100 μg/ml; 241.2 μM) had a 100% inhibitory effect on N. fowleri trophozoites (5 x 10(5) cell/ml). Scanning electron micrograph revealed diosgenin decreased the number of sucker-like apparatuses and food cup formation among N. fowleri trophozo...

متن کامل

Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion.

Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM). This parasite invades its host by penetrating the olfactory mucosa. During the initial stages of infection, the host response is initiated by the secretion of mucus that traps the trophozoites. Despite this response, some trophozoites are able to reach, adhere to and penetrate the epithelium. In the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015